皮克定理

声明:百科词条人人可编辑,词条创建和修改均免费,绝不存在官方及代理商付费代编,请勿上当受骗。详情

皮克定理是指一个计算点阵顶点在格点上的多边形面积公式,该公式可以表示为S=a+b÷2-1,其中a表示多边形内部的点数,b表示多边形落在格点边界上的点数,S表示多边形的面积。

一张方格纸上,上面画着纵横两组平行线相邻平行线之间的距离相等,这样两组平行线的交点,就是所谓格点。如果取一个格点做原点O,如图1,取通过这个格点的横向纵向两直线分别做横坐标轴OX和纵坐标轴OY,并取原来方格边长单位长,建立一朵狱宙海个坐标系。这时前面所说的格点,显然就是纵横两坐标都是整数的那些点。如图1中的O、P、Q、M、N都是格点。由于这个缘故,我们又叫格点为整点。

一个多边形顶点如果全是格点,这多边形就叫做格点多边形。有趣的是,这种格点多边形的面积计算起来很企担兆方便,只要承煮数一下图形边线上的点的数目及图内的点的数目,就可用公式算出。

这个公式是皮克(Pick)在1899年给出的,被称为“皮克定理”,乌体骗这是一个实用而有趣的定理。

给定顶点坐标均是整点(或正方形格点)的简单多边形,皮克定理说明了其面积S和内部格点数目n、多边形边界上的格点数目s的关系:

因为所有简单多边形都可切割为一个三角形和另一个简单多边形。考虑一个简单多边形

亦符合皮克公式(I),以及三角形符合皮克公式(II),就可根据数学归纳法,对于所有简单多边形皮克公式都是成立的。

所有三角形(因为它们都可内接于矩形内,将矩形分割成原三角形和至多3个第二点提到的直角三角形)。

逆运用前面对2个多边形的证明: 既然矩形符合皮克定理,直角三角形符合皮克定理。又前面证明到若P,T符合皮克公式,则 P加上T的PT亦符合皮克公式。 那么由于矩形可以分解成1个任意三角形和至多三个直角三角府几浆道形。 于是显然有,只有当这个任意三角形也符合皮克定理的时候,才会使得在直角三角形符合的同时,矩形也符合。

证明Farey序列的一个神奇的性质:前一项的分母乘以后一项的分子,一定比前一项的分子与后一项分母之积大1。

发表评论

电子邮件地址不会被公开。 必填项已用*标注