皮克公式

声明:百科词条人人可编辑,词条创建和修改均免费,绝不存在官方及代理商付费代编,请勿上当受骗。详情

一张方格纸上,上面画着纵横两组平行线,相邻平行线之间的距离都相等,这样两组平行线的交点,就是所谓格点.如果取一个格点做原点

,并取原来方格边长做单位长,建立一个坐标系。这时前面所说的格点,显然就是纵横两坐标都船鸦员拜是整举辩舟享数的那些点.如图1中的

一个多边形的顶点如果全是格点,这多边形就叫做格点多边形。有趣的是,这种格点多边形的面积计算起来很方便,只要数一下图形边线上的点的数目及图内的点的数目,就可用公式算出.

这个公式是皮克(Pick)在1899年给出的,被称为“皮克定理”,这是一个实用而有趣的定理.

给定顶点坐标均是整点(或正方形格点)的简单多边形,皮克定理说明了其面积S和内部格点数目n、边上格点数目s的关系:

(其中n表示多边形内部的点数,s表示多边形边界上的点数,S表示多和臭嘱边形的面积)

可以将边界上的点看作是一个个圆,在多边形边上的圆其面积只有一半属于这个多边形,但多边形角上的圆就不一样了,将夹角的任一个边延长慨酷蒸,与另一条边的夹角是外角,这角上的圆中外角部分计算面积时多算了润阀晚,要除去,因多边形的外角和是360度,所以正好是个整圆.

皮克公式是奥地利数学家皮克发现的一个计算点阵中多边形的面积公式:S=a+1/2b-1其中a表示多边形内部的点数,b表示多边形边界上的点数,S表示多边形的面积,可以自己代入一下.

如图所示,图是由外圈的八边形和内圈的长方形构成的“0”形图案,求这个“0”形的面积.

【错误解法一】:慨渗兰图中八边形的边界格点数为14,长方形的边界格点数为10,八边形和长方形的内部格点数为0,由皮克公式可得:

【错误解法二】:图中八边形的边界格点数为14,长方形的边界格点数为10,整个图形的内部格点数为2,由皮克公式可得:

【分析】:以上错解是没有正确理解格点多边形的概念。图中的“0”其实不是一个单独的格点多边形,而是由两个格点多边形复合而成的图形,故不能直接套用格点公式,需要分开来计算。

发表评论

电子邮件地址不会被公开。 必填项已用*标注